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Abstract

We present a simple iterative strategy for measuring the connection strength between a pair
of vertices in a graph. The method is attractive in that it has a linear complexity and can be
easily parallelized. Based on an analysis of the convergence property, we propose a mutually
reinforcing model to explain the intuition behind the strategy. The practical effectiveness of
this measure is demonstrated through several combinatorial optimization problems on graphs
and hypergraphs.

1 Introduction

Measuring the connectivity between two vertices in a graph is one of the central questions in many
theoretical and applied areas in computer science. A variety of methods exist for this purpose,
such as shortest path length, number of paths between vertices, maximum flow, and minimum
vertex/edge cut/separator. In this paper, we discuss a strategy that measures the connectivity
between the vertices that are located not very far from each other. It is a simple iterative process
that is based on the edge weights and that takes into account the neighborhood information of
each vertex. We will analyze some properties of the strategy and demonstrate how the connectivity
estimations can be used in practice to improve several well-known algorithms. In particular, the
connectivity measure can be used in algorithms with greedy steps where it is critical to choose an
appropriate edge that is the “heaviest”.

Since the notion of connectivity is of practical significance, many algorithms have been developed
to model it. In a random-walk approach [8, 18], the average first-passage time/cost and average
commute time were used. A similarity measure between nodes of a graph integrating indirect
paths, based on the matrix-forest theorem, was proposed in [4]. Approximation of a betweenness
centrality in [1] makes this computationally expensive concept feasible. A convergence of the
compatible relaxation [2] was measured in Algebraic Multigrid (AMG) schemes [3] in order to detect
strong connections between fine and coarse points. A similarity method based on probabilistic
interpretation of a diffusion was introduced in [14]. Our goal is to design a family of connectivity
models and estimators that are fast and easy to implement and parallelize, and that can be applied
on local parts of the data.
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2 Definitions and Notations

Let G = (V, E) denote a weighted simple connected graph, where V = {1, 2, ..., n} is the set of nodes
(vertices) and E is the set of edges. Denote by wij the non-negative weight of the undirected edge
ij between nodes i and j; if ij /∈ E, then wij = 0. Let W = {wij} be the weighted adjacency matrix
of G. The graph Laplacian matrix is defined as L = D −W , where D the diagonal matrix with
diagonal elements dii =

∑
j wij . Correspondingly, the normalized Laplacian is L = D−1/2LD−1/2.

Denote by δi the degree of vertex i.
The proposed strategy is to initially assign a random value xi to each vertex i and to update

the value xi one by one by a weighted combination of the value itself and the weighted average
of i’s neighbors. Then, after a few iterations, the absolute difference between xi and xj is an
indicator of the coupling between i and j. This process is precisely stated in Algorithm 1 in the
vector form, where we use superscripts such as (k) and (k−1) to distinguish successive iterates and
use subscripts to mean vector entries. We define the algebraic distance (the discussed connectivity
measure) between the vertex i and j, at the kth iteration, to be

s
(k)
ij :=

∣∣∣x(k)
i − x

(k)
j

∣∣∣ . (1)

With R initial vectors x(0,r), r = 1, . . . , R, each vector is independently updated by using Algo-
rithm 1, and the extended p-normed algebraic distance is defined as

ρ
(k)
ij :=

(
R∑

r=1

∣∣∣x(k,r)
i − x

(k,r)
j

∣∣∣
p
)1/p

, (2)

where the superscript (k,r) refers to the kth iteration on the rth initial random vector. For p = ∞,
by convention, ρ

(k)
ij = maxR

r=1

∣∣∣x(k,r)
i − x

(k,r)
j

∣∣∣.

Algorithm 1 Computing algebraic distances for graphs
Input: Parameter ω, initial vector x(0)

1: for k = 1, 2, . . . do
2: x̃

(k)
i ← ∑

j wijx
(k−1)
j /

∑
j wij , ∀i.

3: x(k) ← (1− ω)x(k−1) + ωx̃(k)

4: end for

Conceptually, a small distance means a strong connection. The parameter ω is fixed to be 1/2.

3 Historical Background and Motivation

The algebraic distance is motivated by the Bootstrap AMG (BAMG) method [3] for solving a
symmetric positive definite system Ax = b. In this method, a Gauss-Seidel (GS) process is run
on the system Ax = 0 in order to expose the slow-to-converge variables xi to allow a better
interpolation of the low residual errors. Recently, the extended ∞-normed algebraic distance was
used as a component of an AMG based coarsening scheme for graph linear ordering problems [15].
In a multilevel graph coarsening framework, one of the most vital concerns is how to choose vertices
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that are strongly coupled for merging (either in a strict or in a weighted sense), such that the coarse
graph will faithfully represent the original one with respect to the given optimization problem
[3]. Despite considerable empirical evidence of success in multilevel linear ordering algorithms,
however, the concept of algebraic distance is still not well understood and has not been used widely
in combinatorial optimization algorithms. This paper studies some properties of this relaxation
process and interprets the algebraic distances under a mutually reinforcing environment model,
where the neighborhood connectivity information governs the coupling of the vertices. In particular,
two vertices are strongly connected if they are surrounded by similar neighborhoods. With this
interpretation, the applications of this measure are no longer restricted to multilevel algorithms.
Whenever the concept of vertex couplings is applicable, we can use the algebraic distances to
measure the connectivity between vertices. We show a few such applications in this paper.

We note that an advantage of the proposed measure is its computational efficiency. As men-
tioned in the introduction, there exist other possible heuristics for measuring the connection
strength between a pair of vertices, (e.g., the number of simple paths, the length of the short-
est path, the commute time). However, these quantities are in general expensive to compute. For
example, the problem of counting the number of simple paths connecting a pair of vertices is #P-
complete [17], the Floyd-Warshall algorithm for computing all pairs shortest paths has an O(n3)
time complexity, and to compute the commute times involves the pseudo-inverse of the Laplacian L.
In contrast, since Algorithm 1 is essentially a Jacobi over-relaxation (JOR) process, its k iterations
take only O(km) time, where k is typically small, and m is the number of edges in the graph. This
time cost is a significant reduction, especially for sparse graphs. Further, the JOR iterations are
easy to parallelize because unlike other iterative processes such as GS or SOR, the update of an
entry xi does not require the most recent value of xi−1. Thus, the proposed strategy has a strong
potential for large-scale distributed computing.

4 Iterative Methods for Graph Laplacians

Algorithm 1, on which the definition of algebraic distances is based, is essentially the JOR method
for solving the linear system

Lx = 0. (3)

There being rich results for nonsingular systems, however, here the matrix L is singular, and thus
we need to first study the convergence properties for this particular system. In this section, we
establish some general results for the convergence of several classical iterative methods (including
JOR) for (3). The special case for JOR automatically applies.

Standard iterative methods by matrix splitting for solving a linear system can be written in a
general form

x(k+1) = Hx(k), k = 0, 1, 2, . . . , (4)

where H is the iteration matrix. Let the Laplacian L = D−WL−WU , where WL and WU are the
strict lower and upper triangular parts of W , respectively. Then the iteration matrices for Gauss
Seidel, Jacobi, SOR, and JOR are, respectively,

HGS = (D −WL)−1WU , HSOR = (D/ω −WL)−1 ((1/ω − 1)D + WU ) ,

HJAC = D−1(WL + WU ), HJOR = (D/ω)−1 ((1/ω − 1)D + WL + WU ) .
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We will use the notation H when the discussions are general or apply to all the iterative methods;
we will add subscripts when an individual method is emphasized.

A matrix A ∈ Rn×n is said to be convergent if limk→∞Ak exists.1

Theorem 1. The iteration matrices HGS, HSOR (with 0 < ω < 2), and HJOR (with 0 < ω <
2/ρ(L)) are convergent, with spectral radius ρ(H) = 1. The iteration matrix HJAC is convergent if
and only if none of the connected component of the graph is bipartite.

We have the following result when H is convergent.

Theorem 2. If the graph is connected, and the iteration matrix H for the linear system (3) is
convergent, then the iterate x(k) converges to zero if the initial vector x(0) ∈ range(I−H). Otherwise
x(k) converges to a nonzero scalar multiple of 1 (a vector of all ones).

Corollary 3. Under the conditions of Theorem 2, the quantity s
(k)
ij defined in (1) converges to zero

for all i and j.

To establish the rate of convergence, we make an additional mild assumption that H is di-
agonalizable. Let (σi, φi) denote the eigen-pairs of H, where the eigenvalues are labeled in the
order

1 = σ1 > |σ2| ≥ |σ3| ≥ · · · ≥ |σn|.
Corollary 4. Under the conditions of Theorem 2, assume that H is diagonalizable with eigen-pairs
(σi, φi) labeled in nonincreasing order of the magnitudes of the eigenvalues. Then the iterate x(k)

approaches the limit in the order O(|σ2|k), and the quantity s
(k)
ij defined in (1) approaches zero in

the same order.

The results of Corollaries 3 and 4 seem to suggest that the definition of the algebraic distance
as a measure of the strength of connection is inappropriate. However, we are actually interested
in comparing the relative magnitudes of s

(k)
ij for different (i, j) pairs. In other words, a concurrent

scaling of the quantity s
(k)
ij for all i and j will not compromise the measure. To this end, we consider

the quantity
ŝ
(k)
ij := s

(k)
ij /σk

2 . (5)

We have the following result.

Theorem 5. Under the conditions of Corollary 4, let the initial vector x(0) be expanded in the
eigenbasis of H as x(0) = a1φ1 + a2φ2 + · · ·+ anφn.

(i) If σ2 = σ3 = · · · = σt and |σt| > |σt+1| for some t ≥ 2, and if a2, . . . , at are not all zero, then
the quantity ŝ

(k)
ij defined in (5) approaches the limit

∣∣(ei − ej)T ξ
∣∣ in the order O

(
|σt+1/σt|k

)
,

where ξ is an eigenvector corresponding to the eigenvalue σ2 (with multiplicity t− 1).

(ii) If |σ2| = |σ3| = · · · = |σt| > |σt+1| for some t ≥ 3, where σ2, . . . , σt are not all the same, a2,
. . . , at are not all zero, and if there exists an integer m such that (σ`/σ2)m = 1 for ` = 3, . . . , t,
then the p-th subsequence {ŝ(mk+p)

ij }k=0,1,2,... approaches the limit
∣∣(ei − ej)T ηp

∣∣ in the order

O
(
|σt+1/σt|mk

)
, where ηp = a2φ2 +a3(σ3/σ2)pφ3 + · · ·+at(σt/σ2)pφt for p = 0, 1, . . . , m−1.

1Note that some authors (e.g., [11]) use the term convergent for a matrix A where the limit Ak is zero. However,
the interesting case in this paper is that the limit is nonzero. Thus, we make a broader inclusion in the definition
here.
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5 Jacobi Over-Relaxations

In this section, we discuss the implications of the theorems in the previous section for the JOR
iterations. Specifically, the eigenvalues and vectors of the iteration matrix HJOR are closely related
to those of the matrix pencil (L,D). Because of the distributions of the eigenvalues, the convergence
of Algorithm 1 often is slow. Hence, we also study the behavior of the iterations at an early stage.

5.1 Algebraic Distances at the Limit

An immediate result is that HJOR is diagonalizable and all the eigenvalues of HJOR are real, since

HJOR φi = σiφi ⇐⇒ Lφi =
1− σi

ω
Dφi.

This equivalence implies that if µj is an eigenvalue of (L, D), then µj = (1− σi)/ω for some i. In
general, we may not have µi = (1 − σi)/ω for all i, since the eigenvalues of HJOR are sorted in
decreasing order of their magnitudes, whereas the eigenvalues of (L,D) are sorted in their natural
order. In particular, depending on the value of ω, σ2 can be either 1− ωµ2 or 1− ωµn, and there
are more possibilities for σ3. Enumerating all the possible cases, we have the following theorem as
a corollary of case (i) of Theorem 5.

Theorem 6. Given a connected graph, let (µi, v̂i) be the eigen-pairs of the matrix pencil (L,D),
labeled in nondecreasing order of the eigenvalues, and assume that µ2 6= µ3 6= µn−1 6= µn. Unless
ω = 2/(µ2 + µn), the quantity ŝ

(k)
ij defined in (5) will always converge to a limit |(ei− ej)T ξ| in the

order O(θk), for some ξ and 0 < θ < 1. If 0 < ω < 2/(µ2 + µn), then ξ ∈ span{v̂2}; otherwise (if
2/(µ2 + µn) < ω < 2/µn), ξ ∈ span{v̂n}.

A graphical illustration of the dependence of θ on ω is shown in Figure 1.

2

µ2+µn

2

µ3+µn

2

µ2+µn−1

0

1

θ

ω

1 − ωµ3

1 − ωµ2

−

1 − ωµn

1 − ωµ2 −

1 − ωµ2

1 − ωµn

1 − ωµn−1

1 − ωµn

Figure 1: The θ as a function of ω. Note that the value 2/µn can be less than, equal to, or greater
than 2/(µ2 + µn−1).

Theorem 6 shows two possible limits depending on the value of ω. We can derive some up-
per/lower bounds for the cutting point 2/(µ2 + µn) and estimate which of the two cases in The-
orem 6 is applied (will be given in full version of the paper). For example, if the graph is not
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complete, we have 2/(µ2 + µn) ≥ 2/3, since in such a case µ2 ≤ 1. In practice, we deal with sparse
graphs and we set ω = 1/2. Therefore, ŝ

(k)
ij always converges to |(ei − ej)T ξ| with ξ ∈ span{v̂2}.

5.2 Algebraic Distances at Early Iterations

Sometimes, even the optimal θ is so close to one that the theoretical convergence of ŝ
(k)
ij is of little

practical use—it takes an enormous number of steps before it gets close enough to the limit. (As
observed for some real-life graphs, the smallest possible θ in Figure 1 can be as high as 0.999.)
However, an interesting phenomenon is that in practice x(k) soon becomes “stable”; that is, the
two iterates x(k+1) and x(k) are almost parallel even when k is small.

Theorem 7. Given a graph, let (µi, v̂i) be the eigen-pairs of the matrix pencil (L,D), labeled in
nondecreasing order of the eigenvalues. Denote V̂ = [v̂1, . . . , v̂n]. Let x(0) be the initial vector, and
let a = V̂ −1x(0) with a1 6= 0. If the following two conditions are satisfied:

1− ωµn ≥ 0, (6a)

fk :=
αrk

2k(1− rk)2

1 + αrk
2k(1 + rk)2

≤ 1
κ

, (6b)

where α =
(∑

i6=1 a2
i

)
/

(
4a2

1

)
, rk is the unique root of the equation

2αr2k+1(1 + r) = k − (k + 1)r

on the interval [0, 1], and κ is the condition number of D, then

1−
〈

x(k)

∥∥x(k)
∥∥ ,

x(k+1)

∥∥x(k+1)
∥∥

〉2

≤ 4κfk

(1 + κfk)2
. (7)

Note that when ω = 1/2, which is the relaxation parameter we use, (6a) is satisfied, since the
spectral radius of (L,D), µn, is less than or equal to 2. Also note the condition number κ of D. For
many graphs arising from application areas such as VLSI design and finite element meshes, if the
graph edges have a uniform weight equal to one, then dii is the degree of a vertex. Thus, κ will not
be large. The bound (7) serves as a reference for estimating how close to parallel two iterates are.
In practice, for all the graphs we have experimented with, when k is equal to 30 or 50, the quantity
on the left-hand side of (7) has dropped to the order of 10−4. Note that sin2(π/180) = 3.05×10−4.

6 Mutually Reinforcing Model

The local structure of a graph and the edge weights are two factors that mutually govern the strength
of the connection between a pair of vertices. We present here a model that incorporates both of
the factors for quantitatively evaluating the vertex connectivity. Consider a mutually reinforcing
environment, where entities are influenced by their neighbors. Intuitively, for an abstract property
that is characteristic in such an environment, a part of the property value for an entity should be
a weighted average of the influences from its neighbors in some way. Two entities are said to be
close, or similar, if they are placed in two similar environments, or, consequently, their property
values are close. If we consider the graph itself as an integral environment and vertices as individual
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entities each of which is surrounded by a neighborhood (the neighboring vertices), then two vertices
are strongly coupled if they have similar values for an afore mentioned abstract property. Let each
vertex i be associated with a real number xi. Except for a µ portion of itself, i is influenced by its
neighbors, which is quantitatively a weighted average:

xi = µxi +
∑

j∼i

pijxj , (8)

where j ∼ i means j is a neighbor of i. Here, the portion 0 ≤ µ ≤ 1 is an indicator of how strongly
an environment will act on a vertex. When µ tends to zero, the neighborhood plays a major role,
whereas when µ tends to one, a vertex is so stubborn that its neighbors cannot have a strong
impact on it. The coefficient µ does not need to be explicitly specified; it is an internal property
of the entire environment (i.e., the graph). For such a mutually reinforcing environment, a small µ
is more desired. The weight of the influence by a neighbor j, pij , should be non-negative, and all
the pij related to the same i should sum up to one. The weight pij reflects how strong a neighbor
can influence i, and therefore a natural choice is pij = wij/

∑
j wij . Thus, (8) is formally written

in the following way
xi = µxi +

∑

j

wij

dii
xj (0 ≤ µ ≤ 1). (9)

Equivalently, in the matrix form, it is

x = µx + D−1Wx. (10)

The coupling of two vertices i and j is measured by |xi − xj |. A small value means a strong
connection, which equivalently means that their neighborhoods have a similar influence on the two
vertices.

From (10) we see that x is an eigenvector of the matrix pencil (L,D) and that µ is its cor-
responding eigenvalue. Unless the graph is complete, we have at least two sets of x and µ that
satisfy this system. In the first set, µ is zero, and x is a nonzero scalar multiple of 1. In this case,
since µ = 0, the value of each vertex is entirely determined by its neighbors. This would have been
the most desirable situation for a mutually reinforcing environment because it means that every
entity is influenced only by its neighborhood. However, this situation leads to the result that every
entity is the same (xi constant for all i), and therefore no discriminating power is presented. In
the second set, µ is equal to µ2, the second smallest eigenvalue of (L,D), and x = v̂2. When the
graph is not complete, µ2 ≤ 1. Indeed, frequently µ2 is close to zero in practice. This is naturally a
desirable solution for our problem: the neighborhood has a strong impact on a vertex, and vertices
have different values such that the strengths of the connectivity for different vertex pairs can be
distinguished.

We have proved that soon after the iterations start, two successive iterates are getting close to
parallel. In practice, we observe that when this situation happens, x(k) and x(k+1) form an acute
angle and

∥∥HJOR x(k)
∥∥ ≈ (1 − ωµ2)

∥∥x(k)
∥∥. (This makes sense because ‖HJOR v̂2‖ = 1 − ωµ2.)

Denote x̂(k) = x(k)/
∥∥x(k)

∥∥. Then, we have

x̂(k) ≈ µ2x̂
(k) + D−1Wx̂(k).

This means that the (normalized) iterate x(k), when close to parallel to the next iterate, ap-
proximately satisfies the model (9), with µ = µ2. In other words, the algebraic distance s

(k)
ij =
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∣∣∣x(k)
i − x

(k)
j

∣∣∣, computed from x(k), approximately measures the connection strength between i and
j in our model.

We remark that for a small k, the iterate x(k) can be quite different from its limit v̂2, and for
different initializations, x(k) will be different. However, they all satisfy or approximately satisfy the
mutually reinforcing model (9). This gives us the flexibility, yet not the arbitrariness, to estimate
the connectivity for different vertex pairs. Readers may question why an iterate x(k) is preferred
over the eigenvector v̂2 as the measure. A major reason is that the JOR method with a few number
of iterations is computationally much less expensive than computing an eigenvector, even when
the matrix L (or pencil (L,D)) is sparse. Solving a large scale sparse eigenvalue problem for a
symmetric matrix, say, using the Lanczos method [13, 16, 10], involves frequent convergence tests,
each of which needs to solve an eigenvalue subproblem for a tridiagonal matrix. On the other
hand, inside each JOR iteration is nothing but weighted averages. Therefore, the JOR process
is particularly inexpensive compared with computing an eigenvector. Besides, the simplicity of
Algorithm 1 makes it particularly attractive, and thus it is advocated as the algorithm for the
proposed measure in this paper.

7 Applications

In this section, we demonstrate how the algebraic distance can be used in practice. For this
purpose, we have chosen four problems: maximum weighted matching, maximum independent set
and the minimum τ -partitioning of graphs and hypergraphs. In all these cases, fast existing baseline
algorithms were modified by taking into account the algebraic distance instead of the original graph
edge weights. The experimental graphs were of different sizes (|E| was between 103 and 107) and
have been selected from the UFL database of real-life matrices [6]. Because of page limitation, we
present only two applications here. The other two applications will be included in the full paper.

7.1 Maximum Weighted Matching

A matching, M , of G is a subset of E such that no vertex in V is incident to more than one edge in
M . A matching M is said to be maximum if, for any other matching M ′, |M | ≥ |M ′|. Similarly, a
matching M is said to be maximum weighted if, for any other matching M ′, w(M) ≥ w(M ′), where
w(M) =

∑
ij∈M wij .

In many practical applications two well-known 2-approximations are used. One is a textbook
greedy algorithm [5] for maximum weighted matching; the other is its improved version which is
based on the path growing principle. Both algorithms are presented in [7].

Based on these algorithms and the algebraic distances, we designed two heuristics for the maxi-
mum weighted matching. In both algorithms, there exists a greedy step in which the next heaviest
edge has to be chosen. The criterion for choosing an edge was changed according to the following
heuristic observation: a better matching can be found in a dense graph with less effort than in a
sparse graph. According to this observation, we give preference to matching two nodes that are not
connected well with other nodes from their neighborhood. The preprocessing for greedy algorithms
is presented in Algorithm 2.

The resulting values s′ij are used in greedy choice steps (and sorting if applicable) instead of
graph weights. The experimental results of the comparison are presented in Figure 2a as ratios
between the textbook greedy matching with preprocessing and the same algorithm without pre-
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Algorithm 2 Preprocessing for greedy algorithm for maximum matching
Input: Graph G

1: For all edges ij ∈ E calculate ρ
(k)
ij for some k, R and p

2: For all nodes i ∈ V define ai =
∑

ij∈E 1/ρ
(k)
ij

3: For all edges ij ∈ E define s′ij = ai/δi + aj/δj

processing. Almost identical results were obtained by improving a greedy path growing algorithm
from [7]. These particular results were obtained with k = 20, R = 10, and p = ∞. However,
results of almost the same quality have been obtained with many different combinations of R ≥ 5,
10 ≤ k ≤ 100, and p = 1, 2.

7.2 Hypergraph Partitioning

Extending the algebraic distance for hypergraphs is the next step in our future research. Here we
present some preliminary results of defining the algebraic distances on hypergraphs and experi-
menting with them on the hypergraph partitioning problem.

We define a hypergraph H as a pair H = (V, E), where V is a set of nodes and E is a set of
hyperedges. Each h ∈ H is a subset of V. A hypergraph τ -partitioning is a well-known NP-hard
problem (see [9] for its graph version). The goal of the problem is to find a partitioning of V into
a family of τ disjoint nonempty subsets (πp)1≤p≤τ , while enforcing the following:

minimize
∑

h∈E s.t. ∃i,j∈h and

i∈πp⇒j 6∈πp

wh

such that ∀p ∈ [1, τ ], |πp| ≤ (1 + α) · |V |
τ

,

(11)

where α is a given imbalance factor. In this paper, we refer to the problem with τ = 2.
HMetis2 [12] is one of the fastest and most successful modern solvers for partitioning problems.

We use it as a black-box solver and define its extension HMetis2+ in Algorithm 3. First, we extend
the algebraic distance for hypergraphs using its bipartite model. In particular, we create G = (V,E)
with V = V⋃ E and ij ∈ E if i ∈ V appears in edge j ∈ E . The edge weights are preserved with
no change. Second, HMetis2 is applied on hypergraph with new hyperedge weights, namely inverse
(small algebraic distance replaces heavy edge weight) algebraic distances.

The numerical results of comparing HMetis2 and HMetis2+ are presented in Figure 2b. Since
HMetis2 is a multilevel algorithm, a more correct way to apply the algebraic distances is to use
them at all levels as it was demonstrated in [15]. Even in these preliminary results, however, one
can easily see that a significant improvement can be obtained by reinforcing a black-box algorithm
with algebraic distances.

8 Conclusion

In this paper, we proposed a simple iterative algorithm for measuring the connectivity between
graph vertices. We presented a convergence analysis of the algorithm, and interpreted the proposed
measure by using a mutually reinforcing model. Empirical results show that the proposed measure
is effective in several combinatorial optimization problems.
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Algorithm 3 HMetis2+ : First eight lines—algebraic distance related preprocessing
Input: Hypergraph H, k = 20, R = 10
1: G = (V, E) ← bipartite graph model
2: Create R initial vectors x(0,r)

3: for r = 1, 2, . . . , R do
4: for m = 1, 2, . . . , k do
5: x

(m,r)
i ← ∑

j wijx
(m−1,r)
j /

∑
j wij , ∀i.

6: end for
7: end for
8: return modified edge weights s

(k)
h ← ∑

r maxi,j∈h

∣∣∣x(k,r)
i − x

(k,r)
j

∣∣∣, ∀h ∈ E .

Input: Hypergraph H with hyperedge weights 1/s
(k)
h

1: C ← hyperedge cut obtained by HMetis2 on H with the modified edge weights
2: return cost of C with original edge weights

(a) (b)

Figure 2: (a) Comparison of greedy algorithms for matching with and without algebraic distance
preprocessing. Each point corresponds to the average of ratios between matching sizes costs pro-
duced by the greedy algorithm with preprocessing and the same algorithm without preprocessing
for one graph. The average was calculated over 20 different executions with different random initial
vectors. The total number of graphs is 100. (b) Comparison of HMetis2 and HMetis2+ for hyper-
graph 2-partitioning. Each point corresponds to the average of ratios between cut costs produced
by HMetis2 and HMetis2+ for one graph. The average was calculated over 20 different executions
with different random seeds. The total number of graphs is 200.
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[14] Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffusion maps,
spectral clustering and eigenfunctions of Fokker-Planck operators. In Advances in Neural
Information Processing Systems 18, pages 955–962. MIT Press, 2005.

[15] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation based coarsening for combinatorial opti-
mization problems. submitted, 2009.

[16] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead Press, 1992.

11



[17] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

[18] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Structural
Analysis in the Social Sciences. Cambridge University Press, 1994.

The submitted manuscript has been created
in part by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce,
prepare derivative works, distribute copies to
the public, and perform publicly and display
publicly, by or on behalf of the Government.

12


